What’s in a Look? For Wolves, Maybe Everything


WolvesIt’s been said that the eyes are the windows to the soul. They allow us to communicate feelings across a room, direct the attention of others, and express emotion better than words ever could.  The importance of eye contact in non-human species is well known—we’ve all heard that you shouldn’t stare a bear or angry dog in the eyes—but we don’t know a whole lot about how gaze is used between individuals of the same species. Japanese researchers took on this topic in a recent PLOS ONE article, focusing specifically on how eye contact and communication is affected by eye visibility and facial patterning around the eyes of canids.

Their research observed 25 canid species, comparing variations in facial pattern and coloring to observations about their social behavior and evolutionary history. They found that canines may use facial markers to either highlight or de-emphasize their eyes. Species with more distinguishable eyes tended to live and hunt in groups, where gaze-communication facilitates the teamwork that is necessary to bring down large prey and stay safe. Those with camouflaged eyes were more likely to live alone or in pairs, where communication with other members of their species may not be needed in the same way.

facial area maps

Using photos of each species, the authors analyzed the contrast between five areas of the canine face: pupil, iris, eyelid margin, coat around the eyes, and facial area including the eyes, as shown in the figure above. They measured contrast assuming red-green colorblindness of the observer (fun fact: canids cannot see the full spectrum of color). Species were then grouped according to the visibility of their eyes, described in the figure below:

  • Group A contained species with easily visible pupils and eye placement
  • Group B contained species with camouflaged pupils but clearly defined eye placement
  • Group C contained species with fully camouflaged eyes and pupils

group types

The authors found the strongest correlation between eye visibility and living and hunting behavior. More species in Group A, like gray wolves, live and hunt in packs, whereas more species in Groups B and C, like the fennec fox and bush dog, live and hunt alone or in pairs. Species in Group A also spend significantly more time in “gazing postures,” with their sight and body directed at another animal, an action that accentuates their focused attention to other members of the group. The genetic similarity between species was not as useful in explaining these differences, with A-type faces found in 8 of 10 wolf-like species, and in 3 of 10 red fox-like species. The authors suggest that A-type markings developed independently once these groups had evolutionarily split.

Lighter iris coloring is thought to be an adaptation to ultraviolet light in many species, similar to variations in human skin pigmentation. To determine whether this adaptation could explain the variation seen in canid iris color, the researchers compared the eye coloring of three wolf subspecies from Group A originating from arctic, temperate, and subtropical regions, to see if any differences in their lighter coloring could be attributed to geographical origin. They found that iris color did not vary significantly between the subspecies, suggesting that it may have developed to facilitate communication and not as an adaptation to specific geographical locations.

When the authors reviewed social behaviors, they found a number of social species with B- and C-type faces, the groups normally found alone or in pairs. These species are known to use acoustic or other visual signals, like a howl or the flash of a white tail, to communicate with their comrades. This allows them to skirt one possible disadvantage of gaze-communication: when prey can also identify and follow a gaze, and realize they’ve been targeted.

Gaze communication may be an important tool for other canids, including our own companions, domestic dogs. Previous studies have shown that domestic dogs are more likely to make direct eye contact with humans than wolves raised in the same setting. This could mean that after thousands of years of cohabitation, dogs see us in socially useful ways that wolves never will. Luckily for us, that means we get to see this.

Citation: Ueda S, Kumagai G, Otaki Y, Yamaguchi S, Kohshima S (2014) A Comparison of Facial Color Pattern and Gazing Behavior in Canid Species Suggests Gaze Communication in Gray Wolves (Canis lupus). PLoS ONE 9(6): e98217. doi:10.1371/journal.pone.0098217

Images 2 and 3: Figures 1 and 2 from the article

The post What’s in a Look? For Wolves, Maybe Everything appeared first on EveryONE.

Signs of Change: Regional and Generational Variants in British Sign Language

British Sign Language chart

British Sign Language chart

As societies change,so too do its languages. In the English-speaking world, we often make note ofchanges in language by recognizing the rise of new words, like “selfie,” and the repurposing of familiar words, such as “because.” It may not be a surprise, then, to learn that this “evolution” isn’t limited to the spoken word: sign languages can also change over time. In a recent PLOS ONE study, scientists examined regional variations within British Sign Language (BSL), and found evidence that the language is evolving and moving away from regional variation.

To assist in this undertaking, the authors used data collected and recorded for the British Sign Language Corpus Project. About 250 participants took part in the project, recruited from eight regions in the UK. In addition to hailing from different parts of the country, participants came from various social, familial, and educational backgrounds.

When the first deaf schools were established across the UK in 1760, there was little standardization in signing conventions. Consequently, depending on the school you were attending, schools sometimes taughtpupils to use different signs to convey the same concepts or words. The authors posit that this lack of standardization may be the basis for today’s regionalism in BSL.

The participants were given visual stimuli, such as colors or numbers, and then asked to provide the corresponding sign, one that they would normally use in conversation. The researchers also recorded participants engaging in unscripted conversations, a more formal interview, and in the delivery of a personal narrative,all of which were incorporated into the authors’ study and analyzed.

Example of the stimuli shown to participants.

Example of the stimuli shown to participants.

In their analysis, researchers focused on four concepts: UK place names, numbers, colors, and countries. The participants’ responses to the visual stimuli were compared to with their recorded conversation to control for any confounding variables, or unforeseen social pressure to sign in a particular way. The responses were also coded as being either “traditional” or “non-traditional” according to the regional signing conventions.

Results indicated that age may play a role in whether a participant uses traditional or non-traditional signs.Particularly when signing for countries, about half the responses given by younger participants were non-traditional signs. In addition, some participants—young and old—explained that they changed the country sign they used as they grew older. The researchers posit that this may be due to changing definitions of political correctness, in which older, more traditional signs are now perceived to be politically incorrect.

The authors also found that age may also play an important role in the participant’s use of color and number signs. As was the case for signing countries, younger participants were more likely to use non-traditional signs, and older participants more likely to use traditional signs. The researchers noted that younger participants using signs non-traditional to their region seemed to be adopting signing conventions from southern parts of the country, such as London, or from multiple regions. In other cases, younger participants responded by signing the first letter of the word, such as ‘p’ for purple. The authors attribute this generational shift to the participants’ increased exposure to different signing conventions, ushered in by technological developments, such as the Internet, and increased opportunities for travel.

Changing social norms, technologies, and opportunities—these are no strangers to us by now. As the world changes, so too do the ways in which we communicate, verbally and physically.


Citation:Stamp R, Schembri A, Fenlon J, Rentelis R, Woll B, et al. (2014) Lexical Variation and Change in British Sign Language. PLoS ONE 9(4): e94053. doi:10.1371/journal.pone.0094053

Image 1: British Sign Language chart by Cowplopmorris, Wikimedia Commons

Image 2: Figure 3 from article

The post Signs of Change: Regional and Generational Variants in British Sign Language appeared first on EveryONE.

Underwater Compositions: Song Sharing Between Southern Ocean Humpback Whales

Whale Tail

Imagine a world where sight is limited by the extreme scattering of photons and smell is ineffective due to lethargic diffusion of molecules slowed by the density of water. In these conditions both sight and smell are limited. These conditions characterize, among other things, the ocean, where large sea mammals rely mostly on sound to communicate. The speed of sound is four times greater in water than in air at sea level. Male humpback whales have been observed communicating via ever-changing patterns of vocalization, which scientists have termed ‘song’. These whales compose their songs for the purposes of breeding, learning new songs as they come in contact with fellow crooners. Exactly how and when humpback whales learn these songs, however, remains a larger mystery.

To dive more deeply into the nebulous realms of humpback whale song sharing, researchers of a recent PLOS ONE study recorded instances of humpback whale song in the Southern Ocean.

Humpback whale song is identifiable because of its intricate pattern of structure. Songs are composed of multiple sounds types, for example, as these researchers suggest, ‘ascending cry,’ ‘moan,’ and ‘purr’. When units come together to form a pattern, these units form a phrase. Phrases repeated become a theme, and themes sung in a particular order compose a song. Researchers recorded these compositions by deploying radio-linked sonobuoys, which transmit underwater sound, and then digitized the recordings.

Here is an example of song recorded off the coast of New Caledonia in 2010: 

Recordings, like the one above, reveal a possible link between three distinct breeding populations (marked D, E, and F on the map below) off the shores of eastern Australia and the island to the east of New Caledonia with a shared feeding ground in Antarctica (Area V).

journal.pone.0079422.g001 map


In early 2010, the researchers identified four songs near Antarctica that matched themes from eastern Australia in 2009. By July, 2010, all four songs were then also identified in the group from New Caledonia. The themes recognized in New Caledonia in 2010 were entirely different than the themes of 2009, suggesting a movement of new songs eastward from eastern Australia to New Caledonia.

Consequently, the shared feeding grounds in Antarctica used by both the eastern Australia and New Caledonia groups in early 2010 may be the point at which these populations’ songs diverged.

By capturing sonobuoy recordings near feeding grounds off the Balleny Islands, researchers recorded the first instances of humpback whale song in Area V of Antarctica.

Sonobuoy recording


In addition, the inclusion of feeding grounds into the dynamic pattern of humpback whale song sharing helps shed new light on overall patterns of song learning and transmission from one breeding group to another.

Sound recording off the Balleny Islands near Antarctica, however, is challenging, and the sample of whale singers from this area remains relatively small. Regardless, the song documented here suggests Antarctica (Area V) as an emerging location for future study, and highlights the importance of feeding grounds in the transmission of humpback whale song. Through a better understanding of how and where these dynamic compositions radiate across the Southern Ocean, we can begin to understand humpback whale population connectivity and one of the best examples of non-human, large-scale learning demonstrated throughout the Southern Hemisphere.

To listen to more of the whale song recorded by these researchers, check out the Supporting Information of their article. For more on humpback whales, check out these PLOS ONE papers.

Citation: Garland EC, Gedamke J, Rekdahl ML, Noad MJ, Garrigue C, et al. (2013) Humpback Whale Song on the Southern Ocean Feeding Grounds: Implications for Cultural Transmission. PLoS ONE 8(11): e79422. doi:10.1371/journal.pone.0079422

Images and Acoustic Files:

Image 1: Humpback Whale Tail by Natalie Tapson

Acoustic File: doi:10.1371/journal.pone.0079422

Image 2: doi:10.1371/journal.pone.0079422

Image 3: doi:10.1371/journal.pone.0079422

Awkward Silences: Technical Delays Can Diminish Feelings of Unity and Belonging


Smooth social interaction is fundamental to a sense of togetherness. We’ve all experienced disrupted conversations—some caused by human awkwardness and others by breakdowns in technology. The content of our interactions does influence our connection to each other, but the form and process of communication also play a role.  Technical delays that occur below our conscious detection can still make us feel like we don’t quite click with the person we are trying to communicate with. The authors of a recently published PLOS ONE article, funded by a Google Research Award, investigated how delays introduced into technologically mediated conversations affected participants’ sense of solidarity with each other, defined as unity, belongingness, and shared reality.

For this research, conducted at University of Groningen, The Netherlands, participants in three sets of experiments sat in cubicles with headsets connected to computers (conditions that many of us with desk jobs can relate to) and were asked to talk about holidays for five minutes with an assigned partner. Some conversations were uninterrupted. Others were manipulated by introducing a one-second auditory delay. Some pairs knew about the delay and others did not. Afterward, the conversationalists completed a questionnaire about their sense of unity, belonging, understanding, and agreement with their partners.


Researchers found that those participants whose conversations were interrupted expressed significantly diminished feelings of unity and belonging. Awareness of technical problems had no apparent effect on perceived solidarity.  Even acquaintances stated that they felt a disconnect, though to a lesser degree, than participants who did not know each other. Despite participants expressing that they felt less unity and belongingness with their partner even when they had the opportunity to attribute it to technical problems, technology did not get a free pass on the delayed signal. Those with an interrupted connection also expressed less satisfaction with the technology. Points may have been lost for both relationships and telecommunications.

In a world where our interactions are increasingly mediated by computers and mobile phones with less than perfect signals, the authors suggest that this research provides insight into how our daily interactions may be affected. The method of communication we choose may influence our personal and business relationships, especially among strangers. The authors also posit that technology meant to improve long distance communication by imitating face-to-face interaction may not measure up to expectations if it is not executed without interruptions or delays. Perhaps this is something to consider during your next awkward phone call or video conference— though your awareness of technology as a possible barrier ultimately may not make a difference in how you perceive the person on the other end of the line.

Citation: Koudenburg N, Postmes T, Gordijn EH (2013) Conversational Flow Promotes Solidarity. PLoS ONE 8(11): e78363. doi:10.1371/journal.pone.0078363

Images: First image by Villemard is in the public domain. Second image is Supplemetary Figure 1 from the article.