More 3D Printing Patents Are Expiring Soon: Here’s a Roundup – 3D Printing Industry

“A few years ago, the expiration of many key 3D printing patents had the 3D printing community abuzz.  The 3D printing patents that expired in the 2013-15 timeframe are described here.  At that time, many articles challenged the conventional wisdom that intellectual property drives innovation by creating competition, since the existence of IP forces workarounds.  Those articles argue that patents prevented innovation in 3D printing because the fear of being sued led to a lack of investment in 3D printing R&D, and that patent litigation hindered the adoption of the technology.  The end result, some believe, is that IP creates barriers to entry for new market players, minimizes competition, and keeps prices artificially high.

 

The expiration of several key 3D printing patents in 2013, 2014, and 2015 was supposed to change the industry.  So what happened?  Did the expiration of those patents lead to market growth, reduction in prices, and new products?  Or were other forces, such as the technology itself, holding back new 3D printing technologies?  Are there other 3D printing patents that will expire soon that could have similar effects?  Although it is still too early to give definitive answers to these questions, this article describes developments in the 3D printing industry since the expiration of some of the so-called key patents and discusses 3D printing patents that have or will expire soon….”

Free Inactive Patent Search — 100% Free Inactive Patent Information

“To find patents that have merely expired you can simply set your search terms to look for patents that are 20 years old or older. However, finding a list of inactive patents is far more challenging. This website overcomes that challenge as it allows you to search through all inactive patents in the U.S. that are less than 20 years old. We created this database to help drive open source hardware (OSH) development. Our previous work has found that patents should be significantly weakened as they are actively retarding innovation and technical progress. By properly valuing open hardware development it is clear that the return on investment for OSH development is enormous. In addition, proactive measures to defend the public domain can also provide more safe space for innovators to operate. Our hope is that this database accelerates your open hardware development.

For more information please see the article published in Inventions (2016): Open Source Database and Website to Provide Free and Open Access to Inactive U.S. Patents in the Public Domain. doi: 10.3390/inventions1040024 …”

The case for open?access chemical biology | EMBO Reports

Although the creation of new chemical entities has always been considered the realm of patents, I think that it is time for change. Novel chemical tools, most of which will not have drug?like properties, are too valuable to be restricted; they will be of far greater benefit to research if freely available without restrictions on their use. Chemical biologists would benefit from the many advantages that the open consortium model brings: rapid access to research tools; less bureaucratic workload to enter legal agreements; the ability to work with the best people through collaborations focused on the publication of results; and freedom to operate for companies, harnessing the synergies between academic freedom and industrial approaches to systematically tackle a scientific challenge. My call for open?access chemistry public–private partnerships might sound impractical, but pilot projects are already underway….The SGC is a one example of an open public–private partnership. It was created as a legal charity in 2004 to determine the three?dimensional high?resolution structures of medically important proteins. As an open consortium, the resulting structures are placed in the public domain without restriction on their use. The SGC was conceived nearly ten years ago, based on the conviction that high?quality structural information is of tremendous value in promoting drug discovery and a belief that patenting protein structures could limit the freedom to operate for academic and industrial organizations….Although it is clear that open?access chemistry is in the best interests of society, the challenge is the cost. My arguments can be defended on the macroeconomic level, but costs for assay development and for chemical screening and synthesis are incurred locally, by the institutions and from the public purse. Free release of chemical probes by academia would ultimately benefit the pharmaceutical industry and society, but the possibilities for royalty and license payments for universities would decrease. One solution is to explore models in which both the public and private sectors contribute up?front in return for unrestricted access to the results and compounds, as in the SGC. It should also be noted that an open?access model is not in conflict with the aim to commercialize, at least not in the long term. It could be argued that experience built around specific biological systems would allow commercial development at a later stage if findings by the community indicate that a particular protein or pathway is a valid target. A chemical biology centre with such experience would be in an ideal position to develop new chemistry and launch a proprietary programme….

Open access chemical and clinical probes to support drug discovery : Article : Nature Chemical Biology

“Drug discovery resources in academia and industry are not used efficiently, to the detriment of industry and society. Duplication could be reduced, and productivity could be increased, by performing basic biology and clinical proofs of concept within open access industry-academia partnerships. Chemical biologists could play a central role in this effort….In summary, the development of new medicines is being hindered by the way in which academia and industry advance innovative targets. By generating freely available chemical and clinical probes and performing open-access science, the overall system will produce a wider range of clinically validated targets for the same total resource. This is arguably the most effective way to spur the development of treatments for unmet needs.”

Open-source science to enable drug discovery

“The drug discovery process is losing productivity to the detriment of the global economy and human health. The greatest productivity gains in the sector can be achieved by solving the fundamental scientific problems limiting the progression of compounds through clinical trials. These problems must be addressed through a combination of ‘blue sky’ and targeted research on priority issues, perhaps defined within a ‘grand challenges’ framework. For many reasons, targeted research should be performed in PPPs [public–private partnerships] that release information into the public domain immediately, with no restriction on use.”

Bermuda Principles meet structural biology : Article : Nature Structural & Molecular Biology

“The Structural Genomics Consortium (SGC; http://www.thesgconline.org/) is a public-private partnership that places the three-dimensional structures of proteins of relevance to human health into the public domain without restriction on use. Over the past 3 years, the SGC has deposited the structures of more than 550 proteins from its Target List (http://www.thesgconline.org/structures/about.php) into the Protein DataBank (PDB); this accounts for about one-quarter of the new structures of human proteins in the PDB over this period (‘new’ is defined as <95% sequence identity to proteins whose structures were already available in the PDB) and the majority of the new structures from the human parasites that cause malaria, cryptosporidiosis and toxoplasmosis. Over the next 4 years, the SGC is committing to determining the structures of another 600 proteins from its Target List, including eight human integral membrane proteins.

The SGC has been releasing the coordinates for all the SGC structures into the PDB immediately after they meet the SGC quality criteria (http://www.thesgconline.org/structures/sgc_structure_criteria.php), even if the ultimate intention is to describe the work in the peer-reviewed literature. This data release policy, which has often meant that coordinates were available for several months before the manuscript was even written, has not limited the ability of our scientists to publish….”

SGC | Structural Genomics Consortium

“The SGC is engaged in pre-competitive research to facilitate the discovery of new medicines. As part of its mission the SGC is generating reagents and knowledge related to human proteins and proteins from human parasites. The SGC believes that its output will have maximal benefit if released into the public domain without restriction on use, and thus has adopted the following Open Access policy.

The SGC and its scientists are committed to making their research outputs (materials and knowledge) available without restriction on use. This means that the SGC will promptly place its results in the public domain and will not agree to file for patent protection on any of its research outputs. It will seek the same commitment from any research collaborator….”

OSM – Open Source Malaria

The Open Source Malaria project is trying a different approach to curing malaria. Guided by open source principles, everything is open and anyone can contribute. 

 

This Landing Page aggregates the most recent activity in Open Source Malaria. Action items are on the To Do List and experiments from all contributors are recorded in the Lab Notebooks. Most current research is on a very promising set of molecules known as Series 4. If you’d like to get involved, go right ahead, or get in touch with a member of the consortium (click on “Join the Team” below). In open source research all data and ideas are freely shared, anyone may participate as an equal partner and there will be no patents – think “Linux for Malaria Research” (FAQ).…”

Open Material Transfer Agreement (OpenMTA)

“The Open Material Transfer Agreement (OpenMTA) is a simple, standardized legal tool that enables individuals and organizations to share their materials on an open basis….Developed as a collaborative effort led by the BioBricks Foundation and the OpenPlant Initiative, with input from researchers, technology transfer professionals, social scientists, lawyers, and other stakeholders from across the globe, the OpenMTA reflects the values of open communities and the practical realities of technology transfer….”

Danes step away from patenting in favour of ‘open science’

Denmark’s top-ranked higher education institution is to shift away from patenting research conducted in partnership with the private sector to pursue an open science model.

Aarhus University’s new initiative, called Open Science, does not allow either the university or the companies involved to patent any discoveries made during the research process and, at the end, the results are disclosed to everyone – even other firms – in what it calls a “patent-free playground”.